Vidyavardhini's College of Engineering & Technology, Vasai Department of Computer Engineering Academic Year 2020-21

Sub: Discrete Structures (CSC305)

Year/Sem:- SE/ Sem III

Max. Marks: 50

Q.No.	Questions	Mark
		S
1	The union of the sets {1, 2, 5} and {1, 2, 6} is the set	2
	a) {1, 2, 6, 1}	
	b) {1, 2, 5, 6}	
	c) {1, 2, 1, 2}	
	d) {1, 5, 6, 3}	
2	The intersection of the sets {1, 2, 5} and {1, 2, 6} is the set	2
	a) {1, 2}	
	b) {5, 6}	
	c) {2, 5}	
	d) {1, 6}	
3	The difference of {1, 2, 3} and {1, 2, 5} is the set	2
	a) {1}	
	b) {5}	
	c) {3}	
4	d) {2}	
4	The compound propositions p and q are called logically equivalent if	2
	is a tautology.	
	a) p → q	
	$p) b \to d$	
	c) ¬ (p v q)	
	d) ¬p v ¬q	
5	$p \rightarrow q$ is logically equivalent to	2
	a) ¬p V ¬q	
	b) p v ¬q	
	c) ¬p v q	
	d) ¬p ∧ q	
6	p v q is logically equivalent to	2
	a) $\neg q \rightarrow \neg p$	

	$b) q \rightarrow p$	
	$c) \neg p \rightarrow \neg q$	
	$d) \neg p \rightarrow q$	
7	The binary relation {(1,1), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2)} on the set	2
	{1, 2, 3} is	
	a) reflective, symmetric and transitive	
	b) irreflexive, symmetric and transitive	
	c) neither reflective, nor irreflexive but transitive	
	d) irreflexive and antisymmetric	
8	Consider the relation: R' (x, y) if and only if x, y>0 over the set of	2
	non-zero rational numbers, then R' is	
	a) not equivalence relation	
	b) an equivalence relation	
	c) transitive and asymmetry relation	
9	d) reflexive and antisymmetric relation	2
	A directed graph or digraph can have directed cycle in which	_
	a) starting node and ending node are different	
	b) starting node and ending node are same c) minimum four vertices can be there	
10	d) ending node does not exist	2
10	What is a complete digraph?	2
	a) connection of nodes without containing any cycle	
	b) connecting nodes to make at least three complete cycles	
	c) start node and end node in a graph are same having a cycle	
	d) connection of every node with every other node including itself in a digraph	
11	A function is said to be if and only if f(a) = f(b) implies	2
11	that a = b for all a and b in the domain of f.	
	a) One-to-many b) One-to-one	
	c) Many-to-many	
	d) Many-to-one	
12	A drawer contains 12 red and 12 blue socks, all unmatched. A	2
12	person takes socks out at random in the dark. How many socks	_
	must he take out to be sure that he has at least two blue socks?	
	a) 18	
	b) 35	
	c) 28	
	d) 14	
13	The least number of computers required to connect 10 computers	2
-5	to 5 routers to guarantee 5 computers can directly access 5 routers	
	is	
	a) 74	
	b) 104	

	c) 30	
	d) 67	
14	Consider the recurrence relation $a_1=4$, $a_n=5n+a_{n-1}$. The value of a_{64} is	2
	a) 10399	
	b) 23760	
	c) 75100	
	d) 53700	
15	What is the recurrence relation for 1, 7, 31, 127, 499?	2
	a) b _{n+1} =5b _{n-1} +3	
	b) b _n =4b _n +7!	
	c) $b_n = 4b_{n-1} + 3$	
	d) $b_n = b_{n-1} + 1$	
16	Find the value of a_4 for the recurrence relation $a_n=2a_{n-1}+3$, with $a_0=6$.	2
	a) 320	
	b) 221	
	c) 141	
	d) 65	
17	In a 7-node directed cyclic graph, the number of Hamiltonian cycle	2
	is to be	
	a) 728	
	b) 450	
	c) 360	
	d) 260	
18	If each and every vertex in G has degree at most 23 then G can have	2
	a vertex colouring of	
	a) 24	
	b) 23	
	c) 176	
	d) 54	
19	In a the vertex set and the edge set are finite sets.	2
	a) finite graph	
	b) bipartite graph	
	c) infinite graph	
20	d) connected graph	
20	An n-vertex graph has edges.	2
	a) n ²	
	b) n-1	
	c) n*n	
21	d) n*(n+1)/2	
21	The tree elements are called	2
	a) vertices	
	b) nodes	

	c) points	
	d) edges	
22	Two labelled trees are isomorphic if	2
	a) graphs of the two trees are isomorphic	
	b) the two trees have same label	
	c) graphs of the two trees are isomorphic and the two trees have	
	the same label	
	d) graphs of the two trees are cyclic	
23	A non empty set A is termed as an algebraic structure	2
	a) with respect to binary operation *	
	b) with respect to ternary operation ?	
	c) with respect to binary operation +	
	d) with respect to unary operation –	
24	An algebraic structure is called a semigroup.	2
	a) (P, *)	
	b) (Q, +, *)	
	c) (P, +)	
	d) (+, *)	
25	Condition for monoid is	2
	a) (a+e)=a	
	b) (a*e)=(a+e)	
	c) a=(a*(a+e)	
	d) (a*e)=(e*a)=a	